
A METHOD OF CALCULATING THE TEMPERATURE 

FIELD IN MULTILAYER MEDIA 

O. D. Reshetin UDC 536.24 

An approximate method is developed for calculating the temperature field in composite bodies for arbitrary 
boundary conditions on the outer and inner boundaries. 

A large number of thermophysical problems, related to the study of  the formation process of temperature fields 
in complicated and inhomogeneous systems, reduces to calculating the nonstationary field in multilayer media [1, 2]. As 
shown in [3], the temperature field in these systems depends strongly on the value of the contact resistance of adjacent 
layers, account of  which is needed for a large number of technical instruments. 

Presently there exists a number of  general methods of  obtaining analytic solutions in multilayer media in the 
presence of an ideal contact between layers [4-10]. A critical use of the available methods, however, is accompanied by 
significant mathematical difficulties, sharply increasing with the number of components of system layers. These are due to 
the necessity of  solving in each specific case an algebraic system of equations, whose number equals twice the number of 
layers. The solution of the multilayer problem for nonideal contact between layers is reduced in [11, 12] to a system 
of integral equations, which also involves certain mathematical difficulties with increasing number of  layers. 

I n  the present formulation the mathematical problem reduces to Solving a system of equations in partial derivatives 

OzUh OU~ (1) 
al,. -- ; H ~ _ l ~ x ~ H h  (k:= 1 2 . . . . .  ~) 

Ox z Ol 

with the following boundary conditions: 

and initial conditions 

~ OU~_~ _ ~z~ (t) Ut = - -  f, (t) for x = O, (2) 
Ox 

~.1~ c?Uh OUh+i 
Ox = z~'+l O.-~-- for x-= gk, (3) 

]~, ~, ~h  - -  - ~ - U t ~ - - U h +  1 (k = 1, 2 . . . . .  n .... 1), 
Ox 

U k = % ( x )  ( k = l ,  2 . . . . .  n) for t = 0 .  

(4) 

(5) 

Let a solution of the problem (1)-(5) exist and be unique. There exist then unique functions ff~(t) ('~ = 1, 2), satisfying 
the conditions: 

,~  (t) = U~ (H~_. t), ,~  (t) = u~ (14~, t). (6) 

We denote by Gk(X, t, ~, r) the Green's function for the Cauchy problem in the region [Hk_ 1' Ilk]" The solution for the 

k-th layer, satisfying the k-th equation and the k-th initial condition, is then [13] 

t t 

Uh (x, t) = ah ~ (x) ah (x, t, Hh-1, ~) dz --a~ 41 (x) ~ ah 

0 0 

(7) 
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where 
H~ 

Dh (x, t) -- i' g'h (~[) Gh (x, t, ~, 0) d~. (8) 
Hh. 1 

A pair of unknown functions ~ ( r )  appears in (7) and is determined from the boundary conditions. We approximate the 

unknown functions by splines on the uniform grid 

M VL~i ( h - - 6 ~  t)a -}- MV'~ (1--h_~) a 6 I  ? (v,~g~_~_ MY'--~ @)t~--tl ~' (g~'~--MV'~ 6l~2) t --_t~_~.t ' (9) 

where l is the step in the variables t, yi %k is the value of the function ~ ( t )  at the points t i = i/, and Mi%k are constant 

coefficients, related to yi 3',k by the relations [14] 

N 
M / v , h  6 v,h 18 ~ v,h 6 . 

l a~0y~,0--l- 7 b~.~ +T%,~;~'2~; (10) 
~= 0 

1 6~,. 8~ is the Kronecker symbol, y3',k ,~3',k bl, = % ~ - - - ~ -  t,0 ' J t ,  N are the derivatives of the functions ~ ( t )  at the edges of  the 

interval [0, tN], and aij are elements of  the inverse matrix of coefficients of the system determined by a nonperiodic one- 

dimensional spline of  type I, for whose calculation simple analytic expressions are available [14]. 

After substituting (9) into (7) we obtain the k-th solution 

Uh (x, l) = S~ (x, t) - -  S 2 (x, 1) -}- Dr, (x, t), (11) 

where the functions S~(x, t) (3' = 1, 2) are determined for (r - 1)l < t ~< rl by the equation 

y h h,y 
s'~ (x, t) = (MT,~'I~K~:~ (x, 1) + w '  K~  (x, t)}. 

The functions K-,I~ (x, 1) (v = 1, 2) depends on the interval number and on the subscript as follows: for r = 1 

(12) 

and for 1 <  r ~ N  

h,v 1 v 
/~3,1 (A', {, ~1, ~)}' KI ,e (:,:, L) -- ~ - { ~ , : , ( X ,  t, [1, 1)--  v,h 

1 
-'~ ,1 (x, t, to, 0}, 

h ,'~ ?,h y ,h  
~ 2 , 0 ( X ,  [) (X, {, tl, ~), a/(~:]'~(X, t) ]~1,1( X, ~, ~O, t), 

(13) 

(14) 

kv @ Kl:o(x,  O= v,~ v,h {]~1 ,1 (X, {, tl, ~1)--  ~3 ,1 (  X, ~, ~i, ~1)}, 

h ?  l 7 h  v h  ~7,:i(x, t ) = T  {R3:i (x, t, t~_,, t~)--Rv:~(x, t, h_,, h ) +  R,:~+, (x, t, h . ,  h+,)--R~',E1 (x, l, t~+,, t~+0} 
[ 

(i = 1, 2, . . . ,  r --2) ,  (15) 

h,v 1 v k R~',r-i (x, t, tT. ,  tr_~) t ) - -  v h - -  + R ~ , ,  (x ,  t, tr, (x ,  t ,  _ __ R ~ : ,  tr, t ) } ,  /(1 ,r-1 (X, l) = T {Rs',r-I (X, l, l,._., 1._,) v h v,k 

Klk,'7 (X, ~ ) ~ T  {~3[r(X, {, ~r--1, ~) - - i~ l : r (  x, ~, tr-- 1, [)}, 

h,7 ",, h : - - -R1 ', 1 tl, q), (16) K2,o(x, l) (x, t, 

'~(x, 1, t~__~, t3 R~v:~_~(x, t, h+~, h+~), K~:7(x, 0 = R~.~ 
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4,7 = R~.~_~(x, t, t~_~, t~_~)- -R~:~(x ,  t, t~, t), 
k ~  

= RI ,r  (X, t ,  t r _ l ,  t)- K~',~ (x, t) v, (16) 

The following integral notation was adopted in Eqs. ( 13)-(16): 

t, q, c ) =  an r ( ' c - -q ) "  0 Gh(x, t, Hn_~+., x) dx. Rv.;~. ( x, (17) 

(v-- l) l  

We substitute (10) into (12) and express the functions S~(x, t) in terms of the unknown constants v,h v ,h  Yi ' Yt,O' V ~  �9 
Following elementary transformations, we obtain the functions S~(x, t) in the form: 

N 

S~(x, t) y~:~PVo'n(x, t ) +  ~_~ yTkLT k(x, O +  y~p~i~(x ,  O, (18) 
i=0  

where 

r 

P~'~ (x, t) = (--1)~<~ ~ai~K~:V (x, l) (,it = 0, N); 
i=0  

r r 

q-=' q=l  

Since 

unknowns Ye v'n, YIY,'0 ~, g~t,~ for nonideal contacts equals 2n(N + 2). To determine the unknowns we use the boundary 

conditions (2)-(4) at times ti= i / ( i  = 1, 2 . . . . .  N), as well as the equations 

~.n ~ l  S~(Hh_2+v, t . ) - -  O-O--s~(Hh_2+v, t.) + 0 Dh(H~_2+v, t~<) ( v = O , N ) ,  

(19) 

y~,h = r.ph (Hk_i), y~.k = ~k (Hk) due to the self-consistency of  the initial and boundary conditions, the total number of  

(20) 

which are obtained by differentiating (11) with respect to the variable t at the points t = t o and t = t N. 

We substitute (18) into (11) and (20), and then substitute (11) in the boundary conditions (2)-(4). As a result, we 
obtain an algebraic system of  equations for the several unknowns, which in matrix form is: 

Boxo -f- Co• = do, 

Ah•215215 ( k =  1, 2 . . . .  , n - - l ) ,  

A.•  + Bnx~ = dn. 

The first and last matrix equations were obtained from boundary conditions (2), (4), in which vector unknowns 
consisting of N + 2 components appear: 

(21) 

~'0= { y l " ;  ' "  y ' " ~  ~,, {y,~"" y~,'o'; ~' '  Yt.o , t,NJ, = , Yt,m}, 

l,n 2 n. 2,n ; y2,n~ 
x . _ ,  = {y~, - ;  y),g ; V, .x} ,  •  = { Y , ' ,  V,,o ,.N." 

(22) 

The elements of  the matrices B o, C 0, A n, and B n, being of size (N + 2) • (N + 2), are calculated by the equations: 

b -~ ~ x L ) ' I ( 0 ,  t i ) - -  811, bi ~ =J~, 0 - I  1 H - -  ~1 CZ 1 (t l)  --~X PN'6vN+2 (0 ,  t f )  , 

b O . = + L ] . l ( 0 ,  t~vS#r bO O -1,1 
l i1 ~X' = - ~  PN6vN-}- 2 (0 ,  t N ~I~N+2) - -  ~ t v ,  

Ox 

o O 2,1(0 , co 0 p2.1 (0, tN6N+: ), 
C~ti Ot Li IN 6uN+2)' 1try 0t N6vN+2 

(23) 
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O Lt .~(H~,  &), aTv = - - ~ n - ~ x r N O v A r + 2 ( t t n ,  ai i  = - - A n  -~X 

a~i - - - -  0~- Li '([In, t N 8~A,-+2 ), ,av Ot rNOvN+ ~ 

b~.,, = k~ : C~'" ( I t , ,  t,)--c~.~(t,)5~, b ;  = kO -~x t'N'%x+2 (H , ,  h),  

b n. = ~ L~ ''~ (H~, t x 8 A,• b ~ O p~;n (Hn, l A, 6wu + 5~v. gl , t4v = ~ ASvN+2 

The free term vectors consist of  the following elements: 

d o == k, % ( H , ) ~ L ~ '  (0, l , ) - - q ~ , ( 0 ) ~ L o  ' (0,  t,) - -  . D , (0 ,  l,) - - f , ( t ~ ) ,  

d ~ =  q21(/~1)~[ L~' ](  0, tN~uA-r_2)--(Dl(0) L~'I(0, tA,~.,?~@2) - - - ~ D I ( 0 ,  [A-(~IxAu 2), 

(24)  

@ O 2 .n 
~':~ =~ " ( ~ '  &,~,.,:+~)+~r,,(,%~_~) L~" (~ . ,  &.~,,.0. --~(,%)-aTLo (#., G~,,,,,,)._ 

The unknown vectors appearing in the matrix equations, obtained on the k-th inner boundary (k = 1, 2 . . . . .  n - l), contain 
the following elements: 

X k _ l = C { } / ] , k  ; 1,,~. 1,k { gj~,k@l ; . 2 , h @ l .  2.~-~- I g~,o, t&x} ,  •  ~,o  , !!~,~ }, 

~k == {/j/2,k; r ' l]J 'h= ; ~'t,Hl'k-'O l., ./]l'h~l } . l ,  35 
(25) 

The caged matrices Ak, Bk, and C k have the structure: 

r,: ,:,,] r ell [ A ~  , B,, = , cl, = 
(26) 

where the elements of the inner matrices, having size (N+ 2) X (N + 2), are calculated by the equations: 

4 ?  . . . .  ~:k ~ s  (n, .  tA ~,k - ~ k  - - P ~ ' ~  ti), 
�9 , iv ON vA'~ 2 ' 

al.h _ O 1.h 1.h O p l k  i .  
~: (ft Li (Hh, l N 8~tA, ~ 2)' a~B, = : -  0--7- A'~v~'-i--~tH~ tA" 6mu 

a~/.h R a 1 ;~ z, = 0 . . : i, i i , a ~ : ~  ( 1 = 1 ,  2, . , A , ~ + 2 ) ,  

O 2,k (H~., ti), b~i~ A,," O--xO L~,h (nh, t,), 1,],: ~ --= kh -~-x P,v6,e_ 2 

i 
= - - ~ 1 '  t - h ,  /xS~v=.o), ~v -- Px~vN+~ 

~ !  O t  " ' - O t  " - 

(27) 

b~/k = Rkb[,. ~ § ~ j ,  b ~~,, = R~!,, , 'L b ~'.h,,, = 0 (;  - -  I, 2, . . . ,  N + 2), 

zv 

b o~+~ 0_0_L~,k+~(Hh, t N 6  N+~) ' b~,k+~ = a ,~ ,h+~  . .  
~1 = Ot ' : 0-T-~N%N+ 2v~h tN 6~X+2)-- 5~v, 
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O ~,R+~ (HR, t~), c! ,R ;~R+~ O-~-x ,-x%n+~ (g~, h), c#R = - zR+ ,  a---# ~ '" = - 

111 

1 ,h 2,k c~j = 0 ,  c u = 0  ( ] =  1, 2 . . . . .  N §  

0 L~.~+~ (HR, t N 6.~,+2), c~, v - -r'Nb.vN_}_2tllh, 
al at - 

The elements of the vector d k = [dl k, d~] are calculated by the equations: 

d~,k= )~k {% (Hk_l)--~x L~'~(Hk , ti)--~k(Hh) ~ L~'R(H~, t~) + 

-~ ~ Dh (HR, ti)} - ~'h+l {q)h-r-1 '/L/h)~'- Z~ 'h+l (t~],, ti) --q)h+l (I--/h+l)0~ Z2'h~-I (tJR' ~i) -~ O~Ox Dh+l (]-IR' t~)}' 

dl.h = 0 BIt(MR ' ,N~tN42)_}_(Ph(Hh_l)_~_L~.h(Hh, ,N~tN.t_2)--(ph(Hh) ~--~--~-ag'k(Hl~, ,N~tN@2), 
a t  ' (28) 

0 L~.R(HR, h) + o@DR (Hh, /~)}, ll) -- ~Ph (Hh)--~x 

d~ ,R = ~R~(HR+,) L~ '~+~ (n~, t ~  ~+~) -- ~+,(HR) L~ 'R+I (n~, t~8 ~+~)-- -gi- DR+~(#,, tu 6.N+0. 

The subscripts i, j in Eqs. (23)-(28) acquire the values from 1 to N (except for especially marked cases), and the subscripts 

g, vvary f r o m N +  1 t o N + 2 .  

If at the k-th boundary R k -- 0 (ideal contact), it follows from (3) that 

r (t) = ' I + ,  (t). (29) 

Hence the number of  unknowns in the k-th matrix equation (21) is decreased by N + 2, i.e., y~,~ = g),~+~ = ~/) yt~ ~-~ ,q 
u~,h+1 ~/k (q = 0, N), and the vector% k is for ideal contact ~[,q ~- ~,q 

~,~ = { ~ ;  .~Lo; ' J L , } -  (30)  

The elements of the square matrices Ak, Bk, and C k and of  the vector d k are calculated for ideal contact by the equations: 

~2h=ct l ,  h = b l : k - L  b)/h-'-', C~.=C',h ,4~" d],h { i = l ,  2, . . . ,  N - I - 2 ' ]  
, j , o ~  ', ', " ' ~ ' - ' =  t i = ~ ,  2, , N + 2 /  

If boundary conditions of the first kind are given on the outer boundaries of the multilayer body 

it then follows from (6) that 

u11..=0 = fl(t); u,, I.,.=.~ = f~(t), (31) 

*I (t) = f, i t)  ,~  (t) = h ( 0  (32) 

In this case the first and last matrix equations in (21) are absent, the matrices A 1 and Cn_ 1 are vanishing matrices, and in 

the elements of the free term vectors d 1 and d n -  1 one must insert in the corresponding places the unknown functions 

S 1 (HI, t) and S2n ( H  - 1' t) at the required moments of time. 

Thus, the original boundary-value problem (1)-(5) was reduced to a system of algebraic equations (21), whose struc- 
ture remains invariant both for arbitrary boundary conditions at the outer boundaries and for various amounts of  contact 
on the boundaries of  the compound layers. Only the number of  matrix equations of  system (21) changes as a function of  
the shape of  boundary conditions, and the nature of contact at the k-th boundary changes only the dimensionality of 
matrices of the k-th equation. 

We turn to the solution of the algebraic system (21), whose coefficient matrix has a caged tridiagonal structure, 
which makes it possible to suggest a quite effective algorithm for its solution. 
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We calculate the auxi l iary matr ices  

Ph = AhQh_l + Bh, Q-I = 0 (k := O, 1 . . . . .  it), 

Qh ==--P#-lCh (k =: 0, 1 . . . . .  I t - -  1), 

U1,=P#~(d~--AhU~_~), U a = 0  (/~==0, 1 . . . . .  r 0. 

(33) 

Successively e l iminat ing the vectors • .,., Z~I--I f rom the first, ..., (n + 1)-th equations,  we obta in  an equivalent  mat r ix  
system 

• = Q1~• + Uh (k = 1, 2 . . . .  , n - -  1), • -- U~, (34) 

from which the unknowns  are easily de te rmined  by recurrence.  Equat ions  (34) are proved by mathemat ica l  induct ion.  

I f  boundary  condi t ions  of  the first k ind are given at  x = 0, the subscript k acquires values start ing from 1, and the 

matr ices  Qo and U ~ are vanishing. Fo r  a given boundary  condi t ion  of the first k ind at  the lower boundary  the subscript  k 

varies till n - 1. 

Theorems were proved in [14], verifying tha t  a cubic spline and its derivative converge uni formly  to a cont inuous  
funct ion  and its derivative when the n o r m  of  the grid tends to zero. Similar theorems were established for two-dimensional  
funct ions  when app rox ima ted  by  twofo ld  cubic  splines. 

Star t ing from this, we approx ima te  the initial  d is t r ibut ion  ~k(X) by a one-dimensional  spline. On the interval 

[(j - 1)h~r jh~r the init ial  d is t r ibut ion  is then 

A4~h-1 ("r}--6'l~ X)3 ~ "/Id~h (z--x1-1)3-- 6/I~ ~- ( %'h-l-jI/I~'h 1" ( ' t~)z~x i - -X6 ] [z~ @ ( h , \  q~'i -- A/I~ 'h" __(~*)2).r--h~,Xy_l (3~) 

~pl k = jh  k, h~: hk/Mk; M k is the par t i t ion  number  of  the region where ~ are values of  the funct ions ~k(X) at the points  xj " *" = 

[Hk_ 1' Hk 1, and Mff  k are known constants.  

where 

We subst i tu te  (35) in to  (8) and t ransform. As a result  we obtain 

M h 
h h Di~ (x, t) = ~ {M~'h (h~)=N~,i (x, t) + r N2,f (x, t)), 

/=0 

rh ! k 1 a,,.o(~, 0 = -g-{O~' (x, t, x,) - Q,~'3(~, ~, ~,)1; 

(36) 

N'L~-(x, 0 - - @ { @ 3 (  x, t, ~ j_,)--O~" (x, t, xj_,) + Qi~+',(x, t, x~+,)_Q~,~(x, t, x~,)}  ( i =  I, 2 . . . . .  M, , - - I ) ;  

1 k s  k, ,  

(37) 

N~,o(X, t )=- -Q~ '~ (x, t, x~); 

N~,i(x, t) " (x, t, xi_l)--Q~+Xl(x, t, xj+l) (] = 1, 2 . . . . .  Mh--1);  

N h (x, t) k, l 2.M~ = Q~k (x, t, xM~--i). 

The  fol lowing integral  no ta t ion  was adop ted  in Eqs. (37): 

I i~+Hk- '  
Q)'m(x, t, q ) -  (h~),~ j" (g--q)~Oh(x,  t, ~, O)d~. (38) 

([-- 1 )fi~+Hh_ l 

If  a heat  source Fk(X, t) is found in the k-th layer,  the funct ion Dk(X, t) is supplemented  by  the term 

t H h 
SY 
0 Hh_ l 

Fh (~, ~) Gk (x, t, ~, ~r d~dT, 
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whose calculation is conveniently carried out by approximating the function Fk(X, t) by twofold cubic splines. In this case 

the dominent behavior of the solution remains unchanged, while the elements of the free term vector in the k-th layer have 
an additional term. 

Consider the method of calculating the temperature field in composite bodies on the basis of the equations obtained. 
Let it be required to find the solution of the boundary-value problem (1)-(5) on the time interval [0, t*]. We partition the 

given interval into equal segments VtN(V = 1, 2, ... ); and then assign a uniform grid to < t l . .  �9 < t  N with step l on each 

p-th segment. The step l is chosen from the accuracy condition of the approximation of the assigned functions f (t) and 

f2(t), and the number N is selected taking into account the memory of a given computer. By the equations derived we find 

the elements of the matrices Ak, Bk, C k. To calculate the auxiliary matrices Pk and Qk (33) it is necessary to find n in- 

verse matrices of size (N + 2) X (N + 2) in the case of ideal contact, or 2(N + 2) • 2(N + 2) in case of nonideal contact. 

Since for boundary conditions of the first and second kinds, as well as for boundary conditions of the third kind in the 

case of periodic functions a 1 (t) and a 2 (t) on each v-th interval the matrices A k, B k, C k remain invariant (23), the procedure 

of finding the inverse matrices is accomplished only once. If a2(t) is a nonperiodic function, at each v-th segment one must 

recalculate only the matrix Pn" The algorithm of finding the unknown vectors Xk at the v-th segment reduces to a simple 

calculation of the matrices U k (33) and a recurrent calculation of ~k by Eqs. (34). The values of the unknown functions 

found from Eqs. (11), (18), and (8). Since the functions L~/,k (x, t) and Pu%k(x,. t) are independent of y~,k, Uk(X, t) a r e  

y~,,qk, their calculation is also performed once during the whole calculation. After finding the points Uk(X j, t N) at the v-th 

segment the coefficients Mffk are calculated for the initial distribution at the (v + 1)-th step, and the whole procedure is 
repeated. 

Since the calculation of the functions and finding the inverse matrices during the calculation occurs only once, the 
algorithm suggested is quite effective for calculating the temperature field in composite bodies with large t* values. 

The method suggested has been used so far to solve linear problems. In a following publication we intend to show 
how the method can be extended to a class of nonlinear problems. 

NOTATION 
k 

U k -= Uk(X , t), temperature of the k-th layer; hk, width of the k-th layer; /4h = ~ t,.j; Fk(X, t), a prescribed source 

function; X k, a k, thermal conductivity and thermal diffusivity of the k-th layer; R k, thermal surface resistance coefficient; 

a 1 (t), a2(t) , heat-transfer coefficients at the external boundaries of a composite body; Ck(X), initial temperature distribution 

of the k-th layer; and fl (t), f (t), prescribed time functions. 
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