A METHOD OF CALCULATING THE TEMPERATURE
FIELD IN MULTILAYER MEDIA

0. D. Reshetin UDC 536.24

An approximate method is developed for calculating the temperature field in composite bodies for arbitrary
boundary conditions on the outer and inner boundaries.

A large number of thermophysical problems, related to the study of the formation process of temperature fields
in complicated and inhomogeneous systems, reduces to calculating the nonstationary field in multilayer media [1, 2]. As
shown in [3], the temperature field in these systems depends strongly on the value of the contact resistance of adjacent
layers, account of which is needed for a large number of technical instruments.

Presently there exists a number of general methods of obtaining analytic solutions in multilayer media in the
presence of an ideal contact between layers [4-10]. A critical use of the available methods, however, is accompanied by
significant mathematical difficulties, sharply increasing with the number of components of system layers. These are due to
the necessity of solving in each specific case an algebraic system of equations, whose number equals twice the number of
layers, The solution of the multilayer problem for nonideal contact between layers is reduced in [11, 12] to a system
of integral equations, which also involves certain mathematical difficulties with increasing number of layers.

In the present formulation the mathematical problem reduces to solving a system of equations in partial derivatives
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with the following boundary conditions:
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and initial conditions
Ur=au(x) (k=1,2,..., 1) for t=0. (5)

Let a solution of the problem (1)(5) exist and be unique. There exist then unique functions wg(t) (v = 1, 2), satisfying
the conditions:

L) = Un(Hy_y, 1), Y2(8) = Up (Hy, 1) 6)

We denote by Gk(x, t, & 7) the Green’s function for the Cauchy problem in the region [Hk_ ¢ Hk], The solution for the
k-th layer, satisfying the k-th equation and the k-th initial condition, is then [13]
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where
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A pair of unknown functions ¥/’ (1) appears in (7) and is determined from the boundary conditions. We approximate the
unknown functions by splines on the uniform grid
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where [ is the step in the variables t, yi%k is the value of the function w%(t) at the points t, = i/, and Mj'Y’k are constant
coefficients, related to yi%k by the relations [14]
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biy = am——;— 8;,. 8;; is the Kronecker symbol, yt’(lf y N are the derivatives of the functions w%(t) at the edges of the

interval [0, tN], and a;; are elements of the inverse matrix of coefficients of the system determined by a nonperiodic one-

dimensional spline of type I, for whose calculation simple analytic expressions are available [14].

After substituting (9) into (7) we obtain the k-th solution
Up(x, 1) = Saix, t)—Sh(x 1)+ Dy (x, 1), 1y

where the functions Sg(x, t) (v = 1, 2) are determined for (r — 1)/ < t < 1/ by the equation

SI(r, ) = SMIFEREY (e 1)+ ol PG (3 O} (12)
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The functions K27 (x, ty (v =1, 2) depends on the interval number and on the subscript as follows: forr =1
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Ko otn, 0y =RUF_(x, 4, try £,_)—RVE(x, 1, £, 1),
K23, 1) = RVH(% 4, 4y, 0). (16)
The following integral notation was adopted in Eqgs. (13)-(16):
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We substitute (10) into (12) and express the functions Sg(x, t) in terms of the unknown constants yv-*, yp:k, ypl .
Following elementary transformations, we obtain the functions S%(x, t) in the form:
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where
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Since Yy* = 9r(Hr_1), y3-* = @ (Hy) due to the self-consistency of the initial and boundary conditions, the total number of
unknowns  ¥7*, yPk, yp-k for nonideal contacts equals 2n(N + 2). To determine the unknowns we use the boundary
conditions (2)(4) at times t;= il(i=1, 2, .., N), as well as the equations

T = o Sh(Hasey 1) — 2 Sk(H-son W o L DulHhaen, 1) (=0, W) 20)

which are obtained by differentiating (11) with respect to the variable t at the points t = t o and t = N

We substitute (18) into (11) and (20), and then substitute (11) in the boundary conditions (2)-(4). As a result, we
obtain an algebraic system of equations for the several unknowns, which in matrix form is:

Byny 4- Conq = d,

(21
Aprn_y + Buwn + Covpg =dp (k=1,2, ..., n—1),

An“n—l + Bn%n = dn~

The first and last matrix equations were obtained from boundary conditions (2), (4), in which vector unknowns
consisting of N + 2 components appear:
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The elements of the matrices B, G, An’ and Bn’ being of size (N + 2) X (N + 2), are calculated by the equations:
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The free term vectors consist of the following elements:
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The unknown vectors appearing in the matrix equations, obtained on the k-th inner boundary (k = 1, 2, ..., n — 1), contain
the following elements:
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The caged matrices Ak’ Bk’ and Ck have the structure:
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A By, Bii Ch
where the elements of the inner matrices, having size (N+ 2) X (N + 2), are calculated by the equations:
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The elements of the vector dj = [d:(, di] are calculated by the equations:
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The subscripts i, j in Eqgs. (23)-(28) acquire the values from 1 to N (except for especially marked cases), and the subscripts
M, v vary from N+ 1 to N+ 2,

If at the k-th boundary Rg = 0 (ideal contact), it follows from (3) that
P2 () =i, ) 29
Hence the number of unknowns in the k-th matrix equation (21) is decreased by N + 2, i.e., yi-* = yl*+! = y2; Yii=
(g =0, ), and the vectorw is for ideal contact
R R U B (30)

LRl o ok
ylﬁ - y?.q

The elements of the square matrices Ak’ Bk’ and Ck and of the vector dk are calculated for ideal contact by the equations:
@k = alih, bh = bkt LAl oh ot gp ik [ ETh 2 N2
iy ty i if 17 ? if ij i i t\j_;l, 2’ e N+2 }
If boundary conditions of the first kind are given on the outer boundaries of the multilayer body

Uil,mg = F10); Unlmnr, = [2(0), 31)

it then follows from (6) that |
ROES AU HUESNGE (32)

In this case the first and last matrix equations in (21) are absent, the matrices A1 and Cn_ , are vanishing matrices, and in

the elements of the free term vectors d ' and d__, one must insert in the corresponding places the unknown functions

1
S‘(Hl, t) and Sﬁ (H__,, t) at the required moments of time.

Thus, the original boundary-value problem (1)-(5) was reduced to a system of algebraic equations (21), whose struc-
ture remains invariant both for arbitrary boundary conditions at the outer boundaries and for various amounts of contact
on the boundaries of the compound layers. Only the number of matrix equations of system (21) changes as a function of
the shape of boundary conditions, and the nature of contact at the k-th boundary changes only the dimensionality of
matrices of the k-th equation.

We turn to the solution of the algebraic system (21), whose coefficient matrix has a caged tridiagonal structure,
which makes it possible to suggest a quite effective algorithm for its solution.
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We calculate the auxiliary matrices
Prp=AQu_y+ By, Qi =0¢(=0,1, ..., 1),
Qn=—P71C, (B=0,1, ..., n—1) (33)
Uk — Ph_l (dk_’Ak,Uk_l), UAI =0 (k = 0, 1, ey i’l).

Successively eliminating the vectors s, ..., #a—1 from the first, ..., (n + 1)-th equations, we obtain an equivalent matrix
system

o= Quins +Un (f=1, 2, ..., n—1), w, =U,, (34)
from which the unknowns are easily determined by recurrence. Equations (34) are proved by mathematical induction.

If boundary conditions of the first kind are given at x = 0, the subscript k acquires values starting from 1, and the
matrices Q, and U0 are vanishing. For a given boundary condition of the first kind at the lower boundary the subscript k
varies till n — 1.

Theorems were proved in [14], verifying that a cubic spline and its derivative converge uniformly to a continuous
function and its derivative when the norm. of the grid tends to zero. Similar theorems were established for two-dimensional
functions when approximated by twofold cubic splines.

Starting from this, we approximate the initial distribution s,ok(x) by a one-dimensional spline. On the interval
(G — Dhi jhl";] the initial distribution is then

(e —x)° wy (£ —%5-1)° K g WP No—x . (h;’;‘)z) X— Xjq (35)
Py, LT R —1—MiE 7 — MYE ——
T A L A | of — M i
where wjk are values of the functions @k(x) at the points X = jhl”;; h]’; = hk/Mk; Mk is the partition number of the region
[H,_,,H] and Mj"ok are known constants.
We substitute (35) into (8) and transform. As a result we obtain
& o te bk (36)
Dk (xa t) == Z {M?lz (]lk')?‘ AIL_,' ()C, f) - Q; Nz,,' (/\', t)},
j=0
where
1
A’Tf'() ()C, Zl) = —E"_'{Q‘i"1 (X, ta xl) ,,.Qli"s(x, t’ xl)}*
Nt i(x, 9 I%{Qﬁ-‘""(x, fox )= QP et x) F QG b ) QP f, )Y (=1, 2 ., Me— 1)
. 1
N)f,Mk (x, ) = %—{Qﬁés (x, b xa—1)— Q%; (x, £, XMI:—I)};
(37
N3o(x, H=—QF" (x, 1, x));
NS )= QF (e, £, xi) — Qi O £ ) (=1, 20 0, My—1);
Nooy, (5, 8) = Qi (v, 1, agy).
The following integral notation was adopted in Egs. (37):
Eom 1 ’-h;{’l:ﬁk-i
g = —eme | E— @ Gilx, 1 & 0L (38)
(rz)

. Ny
(i~1 )hk +Hk-1

If a heat source Fy (x, t) is found in the k-th layer, the function D, (x, t) is supplemented by the term

t Hh )
j S Fy (&, )Gy (x, ¢, E, T)dEdr,

0 Hy_,



whose calculation is conveniently carried out by approximating the function Fk(x, t) by twofold cubic splines. In this case
the dominent behavior of the solution remains unchanged, while the elements of the free term vector in the k-th layer have
an additional term.

Consider the method of calculating the temperature field in composite bodies on the basis of the equations obtained.
Let it be required to find the solution of the boundary-value problem (1)-(5) on the time interval [0, t*]. We partition the
given interval into equal segments VtN(v =1, 2, ..), and then assign a uniform grid ¢, <C#¢,... <‘tN with step / on cach
»-th segment. The step ! is chosen from the accuracy condition of the approximation of the assigned functions f . (t) and
f2 (t), and the number N is selected taking into account the memory of a given computer. By the equations derived we find
the elements of the matrices Ak’ Bk, Ck' To calculate the auxiliary matrices Pk and Qk (33) it is necessary to find n in-
verse matrices of size (N + 2) X (N + 2) in the case of ideal contact, or 2(N + 2) X 2(N + 2) in case of nonideal contact.
Since for boundary conditions of the first and second kinds, as well as for boundary conditions of the third kind in the
case of periodic functions al(t) and o (t) on each »-th interval the matrices Ay, By, Cy remain invariant (23), the procedure
of finding the inverse matrices is accomplished only once. If e, (t) is a nonperiodic function, at each v-th segment one must
recalculate only the matrix Pn’ The algorithm of finding the unknown vectors »y at the v-th segment reduces to a simple
calculation of the matrices Uk (33) and a recurrent calculation of . by Egs. (34). The values of the unknown functions
Uy (x, 1) are found from Egs. (11), (18), and (8). Since the functions L'i)'=k (x, ) and Pz’k(x, t) are independent of yi%k
yz’é(, their calculation is also performed once during the whole calculation. After finding the points Uk(xj, ty) at the »-th

s

segment the coefficients M‘lpk are calculated for the initial distribution at the (v + 1)-th step, and the whole procedure is
repeated.

Since the calculation of the functions and finding the inverse matrices during the calculation occurs only once, the
algorithm suggested is quite effective for calculating the temperature field in composite bodies with large t* values.

The method suggested has been used so far to solve linear problems. In a following publication we intend to show
how the method can be extended to a class of nonlinear problems.

NOTATION
k
Uy = Uk(x, 1), temperature of the k-th layer; hk’ width of the k-th layer; Hy = 2 i Fk(x, t), a prescribed source
=1

function; Ay, @y, thermal conductivity and thermal diffusivity of the k-th layer; Ry, thermal surface resistance coefficient;
o, (1), az(t), heat-transfer coefficients at the external boundaries of a composite body; <pk(x), initial temperature distribution
of the k-th layer; and f1 OX f2 (1), prescribed time functions.
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